One of the most unusual polyhedra, perhaps because it is so unexpected, is the {5,5} polyhedron
first reported by J. R. Gott, III, in 1967. [__Pseudopolyhedrons__, J. R. Gott, III,
*The American Mathematical Monthly*, Vol. 74, No. 5. (May, 1967), pp. 497-504.]
The vertex star consists of three coplanar regular pentagons, with two additional upright
regular pentagons fitting perfectly into the remaining planar gap. This vertex star creates
only one sponge, infinite in three dimensions. But because the vertex star has a
reflective symmetry, it can be asymmetrically labeled in four different ways.

- [a b
^{+}c^{+}c^{-}b^{-}; a b^{+}c^^{-}] - [a
^{+}b^{+}c^{+}d^{+}e^{+}; a^{+}b^{+}c^^{-}d^^{-}e^{+}] - [a
^{+}b^{+}c^{+}d^{+}e^{+}; a^{+}b^{+}d^^{+}c^^{+}e^{+}] - [a
^{+}b^{+}c^{+}d^{+}e^{+}; a^{+}e^{-}c^^{-}d^^{-}b^{-}] - [a
^{+}b^{+}c^{+}d^{+}e^{+}; a^{+}e^{-}d^^{+}c^^{+}b^{-}]

Return to main page